Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Adv ; 8(45): eabp9540, 2022 11 11.
Article in English | MEDLINE | ID: covidwho-2119147

ABSTRACT

De novo design methods hold the promise of reducing the time and cost of antibody discovery while enabling the facile and precise targeting of predetermined epitopes. Here, we describe a fragment-based method for the combinatorial design of antibody binding loops and their grafting onto antibody scaffolds. We designed and tested six single-domain antibodies targeting different epitopes on three antigens, including the receptor-binding domain of the SARS-CoV-2 spike protein. Biophysical characterization showed that all designs are stable and bind their intended targets with affinities in the nanomolar range without in vitro affinity maturation. We further discuss how a high-resolution input antigen structure is not required, as similar predictions are obtained when the input is a crystal structure or a computer-generated model. This computational procedure, which readily runs on a laptop, provides a starting point for the rapid generation of lead antibodies binding to preselected epitopes.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Humans , Epitopes , Antibody Affinity , Antibodies, Monoclonal/chemistry , Models, Molecular , SARS-CoV-2 , Antigens
2.
J Am Chem Soc ; 144(29): 13026-13031, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1931307

ABSTRACT

Post-translational protein-protein conjugation produces bioconjugates that are unavailable via genetic fusion approaches. A method for preparing protein-protein conjugates using π-clamp-mediated cysteine arylation with pentafluorophenyl sulfonamide functional groups is described. Two computationally designed antibodies targeting the SARS-CoV-2 receptor binding domain were produced (KD = 146, 581 nM) with a π-clamp sequence near the C-terminus and dimerized using this method to provide a 10-60-fold increase in binding (KD = 8-15 nM). When two solvent-exposed cysteine residues were present on the second protein domain, the π-clamp cysteine residue was selectively modified over an Asp-Cys-Glu cysteine residue, allowing for subsequent small-molecule conjugation. With this strategy, we build molecule-protein-protein conjugates with complete chemical control over the sites of modification.


Subject(s)
COVID-19 , Single-Domain Antibodies , Cysteine/chemistry , Humans , Proteins/chemistry , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL